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Abstract. The conventional interpretation of the quantum mechanical probability ampli- 
tudes and probabilities is examined in detail with respect to gauge transformations and the 
Foldy-Wouthuysen transformations. It is shown that the conventional interpretation is 
gauge dependent and, when applied to the relativistic (Dirac) and the non-relativistic 
quantum mechanics, can not be consistent with itself through the Foldy-Wouthuysen 
transformations. It is also shown that these two difficulties are not present in a gauge 
invariant formulation that explicitly incorporates Poynting’s theorem and the conservation 
law of energy into the definition of probability amplitudes. 

1. Introduction 

The question whether the conventional interpretation of the quantum mechanical 
probability amplitudes and probabilities is gauge invariant seems to be an open-ended 
one (e.g. Goppert-Mayer 1931, Leubner and Zoller 1980), accompanied by conflicting 
claims. 

On the one hand, the investigations of Lamb (1952), Power and Zienau (1959) and 
Kobe (1978) lead one to believe that it is gauge dependent. On the other hand, the 
perturbative results of Fried (1973), Babiker et a1 (1974), Bassani et a1 (1977), Healy 
(1977a, b, 1978), Power and Thirunamachandran (1977, 1978), Healy and Woolley 
(1978), Power (1978), Grynberg and Giacobino (1979) and Haller and Sohn (1979) 
seem to indicate that the conventional interpretation is gauge invariant§. 

Our point of view is that these proofs are not conclusive. It is because these two 
conclusions are derived from approximate solutions to the time-dependent Schrodinger 
equations. Moreover, the approximations involved are different: some include the 
effects of line widths, some do not, and some do but also with the authors’ other 
‘physical intuitions.’ We thus believe that these approximate solutions reflect more of 
the approximations used than of the exact definition of the probability amplitudes. 

t Present address: Theoretical Chemistry Institute, University of Wisconsin, Madison, Wi 53706, USA. 
5 There are too many papers in the literature proving the gauge invariance of the conventional interpretation 
by using the results from the usual time-dependent perturbation theory (or its equivalent). We list here only 
some recent papers as references. Note, a recent paper by Aharonov and Au (1979) is not classified as a 
conventional work here because they do not define the probability amplitudes by the eigenfunctions of the 
‘unperturbed’ Hamiltonian. 

0305-4470/82/020437 + 14$02.00 @ 1982 The Institute of Physics 437 



438 K-H Yang 

The purpose of this paper is restricted to examining the gauge properties only of the 
exact conventional probability amplitudes and probabilities. This is because we want to 
separate the question of principle from any approximation. Recently, Kobe and Wen 
(1980) have illustrated numerically and analytically the gauge dependence of the exact 
ground-state probability of a one-dimensional simple-harmonic charged oscillator 
interacting with an external time-varying field in the dipole approximation. Our proofs 
in this paper will be valid for an arbitrary system. 

This paper is divided into seven sections. In § 2, we review the existing textbook 
materials concerning the gauge invariance of the Schrodinger equation. In § 3, we will 
use the gauge invariance of the Schrodinger equation as the only criterion to prove that 
the exact conventional probability amplitudes and probabilities are gauge dependent. 
In § 4, we examine another version of the conventional interpretation-the so-called 
consistent procedure. Here, we will learn that this procedure does not eliminate all the 
gauge dependence in the probability amplitudes and probabilities. It does, however, 
eliminate all the dependence on the gauge transformations between the initial gauge 
(from which such a procedure starts) and all subsequent gauges. The only gauge 
dependence of the probability amplitudes and probabilities defined by this procedure in 
all gauges is the initial-gauge dependence. 

In § 5 we consider the Foldy-Wouthuysen transformations (Foldy and Wouthuysen 
1950) to illustrate that the conventional interpretation, when applied to both the 
relativistic (Dirac) and the non-relativistic quantum mechanics, cannot be consistent 
with itself through the Foldy-Wouthuysen transformations. 

In 9 6 we first review the classical Poynting’s theorem and conservation of energy, 
then we apply them to quantum mechanics to attain the gauge invariant formulation 
(Yang 1976a, Kobe and Smirll978, Leubner and Zoller 1980). Here we will show that 
this formulation gives probability amplitudes that are gauge invariant and are consistent 
with the Foldy-Wouthuysen transformations. Finally, in § 7 we discuss some basic 
reasons for the difficulties encountered by the conventional interpretation and the 
implication of the gauge invariance of the Schrodinger equation. 

2. Gauge invariance of the Schrodinger equation 

In this section, we shall review the existing materials on the gauge invariance of the 
Schrodinger equation and quantum mechanics. All the materials to be presented here 
contain no new information and can be found in textbooks by, e.g., Bohm (1951), Dicke 
and Wittke (1960), Merzbacher (1961), Landau and Lifshitz (1965), Gottfried (1966), 
Sargent et a1 (1977) and Cohen-Tannoudji et a1 (1977). 

Let us consider a non-relativistic, spinless particle with mass m and charge e in the 
presence of a conservative, electrostatic field Eo(r) = -V Vo(r) and an electromagnetic 
radiation field E(r ,  t )  and B(r, t ) .  If we use the potentials (A, @) to represent the 
time-varying fields, then 

E = -v@-(l/c)aA/at, B = V x A .  (2.1) 

The Schrodinger equation in this set of potentials is 

iVb(r, t )  = H1Ir(r, t ) ,  

where the Hamiltonian is 

H = ( p  - e A / ~ ) ~ / 2 m  + eV,+ e@.  (2.3) 
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If we use another set of potentials (A’,  a’) to represent E and B, then (A’, W )  and 
(A,  0) are related to an arbitrary gauge function x(r, t )  by? 

A ’ = A + V x  and af = a- (i/c)ax/at. (2.4) 

If we use H ’  and W’ to denote the Hamiltonian and wavefunction in (A’, @), then 

H r = ( p - e A ’ / c ) * / 2 m  +eVo+e@’ 

= RHR++ih(aR-/at)R+, (2 .5)  

(2 .6)  W’(r, t )  = RW(r, t ) ,  

where 

R ( t )  = exp[iex(r, t ) / c h ] .  (2 .7)  

W(r, t)I2 = IWr, t)I2 

From (2 .6) ,  it is clear that if we restrict ourselves only to Hermitian gauge functions, 

(2.8) 

This relation establishes that both wavefunctions W and T‘ generate the same prob- 
ability for finding the particle at position r at time t. That is, they describe exactly the 
same physical behaviour of the charged particle. Hence the Schrodinger equation is 
gauge invariant because of relation (2.6).  

The prevailing misconception is that (2 .8)  also implies the gauge invariance of the 
conventional probability of finding the particle in some state (e.g. Fried 1973 
paragraphs 1 and 2). It is the purpose of this paper to show the contrary. Our reason is 
that here two different quantities are involved: One is the probability in some state, 
which is a function of time only, whereas the probability in (2 .8)  is that at position r at 
time t. Because of this characteristic difference, what is true for one does not necessarily 
imply that it is also true for the other. In fact, we shall show in the next two sections that 
the well known result in (2.6) implies that the conventional probability amplitudes and 
probabilities are gauge dependent. 

then 

for all r and t. 

3. Gauge dependence of the conventional interpretation 

In this section, we shall show that, by using only (2 .6) ,  the ‘conventional’ probability 
amplitudes and probabilities are gauge dependent. In order to avoid any confusion as 
to the language used here, we will define what we mean by ‘conventional’. For this 
matter, we strictly distinguish between the ‘conventional interpretation’ and a consistent 
procedure which will be discussed in the next section. In the literature, these two 
different interpretations are often not distinguished and confusion inevitably results. 

In order to define the ‘conventional’ interpretation, we first construct the 
‘unperturbed’ Hamiltonian by 

H o = p 2 / 2 m  +eVo (3.1) 
for our physical situation. From now on, we use {c j }  for the eigenvalues and {r$i(r)} for 
the orthonormal and complete (assumed) set of eigenfunctions of Ho. We now define 
t Let us stress here that an understanding of gauge transformations in quantum mechanics requires a 
knowledge of the physical meanings of gauges and gauge transformations in the classical electromagnetic 
theory (Brill and Goodman 1967, Jackson 1975 pp 220-223, Yang 1976b, 1981a). 
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the conventional expansion coefficients {c;(t)} of wavefunction q ( r ,  t )  and {c j ( t ) }  of 
W r ,  t )  by 

c j ( t )  = (4; I W)) and c; ( t )  = (4; I q ' ( t ) ) .  (3.2) 

In other words, the word 'conventional' as used in this paper means using the 
eigenfunctions of HO to define the expansion coefficients regardless of the gauges in the 
Hamiltonians. 

Let us now prove that the conventional expansion coefficients are gauge dependent: 
If V x ( r ,  t )  # 0 over a finite region, however small, in which lY(r, t)I2 # 0, there does not 
exist a real function f ( r ) ,  of time only, such that the relation 

c i ( t )  = c,(i) exp[if(t)l for all j and t (3.3) 

is true. 

Proof. First assume that (3.3) is true. Then using the completeness of we have 

i 

From (2.2) and (3.4), we get 

it& = exp(if)(H - f i f ) ~  = ( H  -fit)*', 

(3 .4)  

(3.5) 

This result implies that H '  can be equal to H - f i f  where f is a function of time only, 
which contradicts our assumption that Vx( r ,  t )  # 0. Thus our proof is completed. 

Next, let us prove that the conventional probabilities are also gauge dependent. For this 
purpose, let us prove the following first: 
If 

Ic;(t)12 = Icj(t)12 for all j and t, (3.6) 

then for any arbitrary integer n the relation 

(*(t)l{(RtHOR)" - ( ~ ~ ) " } l * ( t ) ) =  0 for all t 

must also be true, where R is defined in equation (2.7). 

(3.7) 

Proof. Since {k} are the complete and orthonormal set of eigenfunctions of HO in (3.11, 
it then follows from (3.6) that 

If we substitute the result (2.6) into the left-hand side, we see that (3.7) is true. 
The physical implication of (3.7) is that the operators C?,, defined by 

Qfl =(RtHoR)" -(Ho)", (3.9) 

are constants of motion under the Hamiltonian H. To see if this can be true, let us set 
n = 1; we find 

Q~ = ( e / 2 m c ) ( p . ~ ~ + ~ ~ . p ) + ( e ~ / 2 m c ' ) ( ~ ~ ) ' ,  (3.10) 
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= (e /2mc)(p  . v * + v ~  * p ) + ( e 2 / m c 2 ) ( V x )  * ( V i ) - ( e 2 / m c ) ( V x )  .v(v~+*) 
3 

j , k = l  
+ ( e / 4 m 2 c )  c { [ p j ( v j v k x ) +  (vjvkx)pj + (2e /c ) (v jx>(vf ik) l  

x ( p k  - e A k / c )  + HC} 

+ (e2/2m2C2) 1 { ( v j x ) ( v j v k x ) ( p k  - e A k / C )  + H d .  
3 

j , k = l  
(3.11) 

In the above equation, x is ax/at and HC denotes the Hermitian conjugate. As we can 
see, (dQl/dt), does not in general vanish if V x  # 0. The only exception occurs when 
V( Vo+@) = Vi = V A  = V V x  = 0 .  For this case, one can use the resulting simplified 
conditions to derive a relation between cj and c:. (They are simply different Fourier 
components of the wavefunction Y if Vo = 0.) 

The above result means that (3.6) cannot be true. This, of course, means that the 
conventional probabilities are gauge dependent. Hence our proof is completed. 

Finally, let us note two important things here. First, all our statements through 
equation (3.9) also apply to a Dirac particle. The only change that need be done is to use 
the Dirac unperturbed Hamiltonian and Hamiltonian in (3.10) and (3.11). Second, all 
our proofs are valid for arbitrary potentials of arbitrary fields of arbitrary frequencies. 
Hence whether the system is on or off resonance has no bearing on our results here. 

4. Consistent procedures with initial-gauge dependence 

In the discussions of whether there really is a gauge problem in the conventional 
interpretation of quantum mechanics, one often runs into arguments stressing the 
internal consistency in the definition of probability amplitudes (e.g. Mandel 1979)t. It 
is our purpose in this section to investigate such a procedure and point out that it still 
leaves a gauge ambiguity unresolved. 

In order to see clearly the shortcomings of this procedure, let us first define the 
(conventional) consistent procedure with (A,  a) as the initial gauge by 

E j ( t )  = (4 j lWt) )  and ~ : ( t )  = (4ji(t)IQf(t)> (4.1) 

6j(r ,  t )  = R (t)4ji(r)- (4.2) 

where, using the operator R in (2.7), 

In the above expressions, Y is the wavefunction in (A, 0) and Y’ in ( A f ,  W); and {&(r)} 
are the eigenfunctions of the ‘unperturbed’ Hamiltonian in (3.1), Let us note that (4.1) 
is different from (3 .2 )  in the construction of the expansion coefficients of the wavefunc- 
tion Y‘. From (2.6) and (4.2), it is obvious that 

q t )  = q ( t )  for all j and all t. (4.3) 

f See Healy (1980) and Power and Thirunamachandran (1980) for a counter-argument of Mandel’s 
discussion of the electric dipole approximation. 
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The only question is whether (4.3) implies that the procedure (4.1) has eliminated all 
the gauge dependence in the expansion coefficients. To see that it does nor, let us 
consider another consistent procedure with (A’, @’) as the initial gauge. Thus, the 
expansion coefficients {C,} for q and { 2 ; }  for 9’ from this procedure are 

2: ( t )  = (#,IW)) and t , ~  = (&,( t ) lq(r ) ) ,  (4.4) 

dh ,  t )  = R+#,W. (4.5) 

where, using R in (2.7), 

From (2.6) and (4.5), it follows that 

2,(t) = C ; ( r )  for all j and all t. (4.6) 

Let us now prove that the two consistent procedures in (4.1) and (4.4) still retain 
some kind of gauge dependence by proving that {?,(t)} and {C,(t)} do not generate the 
same probabilities. By equations (3.2) and (4.1), ?,(t) is exactly c,(t). By (3.2), (4.4) and 
(4.6), t , ( t )  is exactly c j ( t ) .  Since we have shown that {c,(t)} and {c; ( t ) }  do not generate 
the same probabilities in 0 3, it follows that the consistent procedure in (4.1) or (4.4) 
does not eliminate all the gauge dependence in the expansion coefficients. 

The reason why (4.1) does not eliminate all gauge dependence is the following. 
Equation (4.3) indicates that this procedure has eliminated all dependence on the gauge 
transformations between the initial gauge and all subsequent gauges. However, the 
wavefunction 9 ( r , t )  depends upon the gauge of (A,@) (e.g. Yang 1976a § I I C ,  
Cohen-Tannoudji et a1 1977) whereas the eigenfunctions {@f ( r ) }  of the ‘unperturbed’ 
Hamiltonian are gauge independent (i.e., do not depend on the potentials in the 
Hamiltonian). It then follows that the coefficients {Z,( t )} ,  and hence {ti@)}, must have 
dependence on the initial gauge (A, a). As a matter of fact, this author has investigated 
this point in detail and discussed how this initial-gauge dependence can be eliminated 
(Yang 1976a $9 I1 C and D). 

5. The Foldy-Wouthuysen transformation 

The basic characteristic of the ‘conventional’ interpretation in (3.2) and the consistent 
procedure in (4.1) is the use of the eigenfunctions of the ‘unperturbed’ Hamiltonian (at 
least once) in the definition of expansion coefficients. The reason why these expansion 
coefficients are gauge dependent and hence have ambiguous meanings, can be under- 
stood from another viewpoint. As has been clearly explained by Cohen-Tannoudji et a1 
(1973,1977), Kobe and Smirl (1978), Grynberg and Giacobino (1979) and Leubner 
and Zoller (1980), the meanings of the ‘unperturbed’ Hamiltonian vary with the 
potentials in the Hamiltonians. Furthermore, it is not in general a true physical quantity 
since p2 /2m is not one in general (Cohen-Tannoudji et a1 1977) (to be discussed in 
detail in 9 7). 

Having understood these points, we now wish in this section to add another 
dimension to the discussion of the interpretation based on one basic principle of 
quantum mechanics. 
The interpretation of quantum mechanics must, in principle, be invariant under all unitary 
transformations. This is where we bring the Foldy-Wouthuysen (FW) transformation 
(Foldy and Wothuysen 1950) into play with gauge transformations to illustrate that this 
principle will be violated if we insist on interpreting the conventional expansion 
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coefficients as probability amplitudes. (The FW transformations will be useful in the 
discussions of the gauge invariant formulation in the next section.) 
To begin with, let us consider a Dirac particle with rest mass m and charge e in the 
presence of the fields in 0 2.  If we use HF for the Dirac ‘unperturbed’ Hamiltonian, and 
YD and HD for the wavefunction and the Hamiltonian in the gauge of (A,  a), then 

HF = car * p  + pmc2 + eVo, (5.1)  

HD=ca.(p-eA/c)+pmc2+eVo+eCP. (5.2) 
Let us use { E : }  and {dp(r ) }  for the eigenvalues and the orthonormal and complete 
(assumed) set of eigenfunctions of HF. According to (4 .1) ,  the consistent expansion 
coefficients {E: }  with (A,  a) as the initial gauge are 

E P ( t )  = (4: \YD(f ) ) .  (5.3) 
Here, we have used the consistent procedure to eliminate all subsequent gauge 
dependence. 

We now perform an FW transformation U to the Dirac equation and so on to get 

iW’(r, t )  = H ~ Y ~ ( ~ ,  t ) ,  YU = UYD,  (5.4) 

$(t)  = (4: I V), 4: = u4p, ( 5 . 5 )  

and 

where if we show only the lowest order terms, the operator U and the Hamiltonian are 
(Foldy and Wouthuysen 1950): 

U = exp(S), S =  ( 1 / 2 m c ) p a r - ( p - - e A / c ) ,  (5.6) 

H U  = UHDUt+ih(aU/at)U’ 

and 

= pmc2 + p ( 1  / 2 m  )[a * ( p - eA/c ) I2  + e VO + e CP + . . . . (5.7) 

Since the Hamiltonian H U  decouples the positive and negative energy components 
to the order shown above, we can take the positive energy component of (5 .4)  only to 
this order. After eliminating the constant term mc2, we get the Schrodinger equation 
with the non-relativistic Hamiltonian in (2.3) if we neglect the spin. If we use the 
consistent procedure with (A, CP) as the initial gauge, then the expansion coefficients 
{E j ( t ) }  are given in (4.1). 

The main question now is: Are the non-relativistic coefficients { E i ( f ) }  consistent with 
the relativistic (Dirac) coefficients {E: ( t ) }  in (5.3)? 

The answer to this question lies in how the non-relativistic ‘unperturbed’ Hamil- 
tonian Ho is obtained from the Dirac ‘unperturbed’ Hamiltonian HF. Let us consider 
another FW transformation U. defined by Foldy and Wouthuysen (1950): 

UO = exp(So), S o =  (1/2mc)par.p.  (5 .8)  

As is clear from (5.7), the operation of U. on HF will give the non-relativistic 
‘unperturbed’ Hamiltonian since 

UOHF ( ~ 0 ) ’  = pmc2 + p(ar 0 p ) ~ / 2 m  + eVo + . . . 
= pmc + p p  2 / 2  m + e v0 + . . . . (5.9) 
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Thus, the eigenfunctions {4i(r)}  of Ho in (3.1) are mathematically consistent with 
{ Uo4? ( r ) } .  This implies that the non-relativisticcoefficient Ei(t ) ,  for each j ,  is consistent 
with the relativistic coefficient Ci(r) defined by 

(5.10) Cj(t> = (U,$+? I U Y D ) ,  

since the non-relativistic wavefunction is consistent with UYD.  

{ E F ( t ) } .  This can be seen by, using the unitarity of U first to get E? = E,”, 
Since U. # U unless A = 0, it is obvious that { C i ( t ) }  are in general not consistent with 

c“p - cj = @ p l ( l -  U&)lYD). (5.11) 

The only situation when (5.11) vanishes identically, which implies that {ti} are 
consistent with {E?} ,  is when U. = U or A = 0. This situation allows no magnetic 
interaction. In theory, it allows all electric multipole interactions (e.g. Fiutak 1963). 
However, it would be physically inconsistent to take into account the electric quadru- 
pole interaction without the magnetic dipole interaction, etc (e.g. Yang 1976a § I11 A). 
Thus, only the electric dipole interaction is allowed. In other words, only when the 
Dirac and the non-relativistic Hamiltonians are in the electric dipole form can the 
procedure in (4.1) yield consistent relativistic (Dirac) and non-relativistic expansion 
coefficients. 

6. The gauge invariant formulation 

Before delving into the gauge invariant formulation, let us first review the difficulties 
encountered by the conventional interpretation defined in (3.2) and the consistent 
procedure defined in (4.1). We have found that these two different interpretations 
have: (i) the consistency problem due to different choices of gauge in the conventional 
interpretation or due to different choices of the initial gauge in the consistent procedure, 
and (ii) the consistency problem between the relativistic (Dirac) and the non-relativistic 
expansion coefficients through the FW transformations. Our purpose in this section is to 
show that the gauge invariant formulation proposed previously (Yang 1976a, Kobe and 
Smirl 1978, Leubner and Zoller 1980) has the ability to resolve these difficulties?. 

The conceptual basis of the gauge invariant formulation is the microscopic Poyn- 
ting’s theorem and the conservation law of energy as derived from Maxwell’s equations 
(e.g. Jackson 1975 pp 236-41 especially equations (6.110) and (6.111)). This is 
because we are dealing with the electromagnetic interaction of the ‘basic’ constituents 
of matter. Since the concept of applying Poynting’s theorem to quantum mechanics is 
relatively recent (Yang 1976a), let us first review the theorem within the framework of 
the classical electromagnetic theory. 

6.1. The classical Poynting’s theorem 

To avoid confusion, let us first state that all symbols in this subsection represent 
classical quantities. 

Assume that we have two physically measurable charge-current distributions 
(p”,  J’ )  and ( p ’ ,  J ’ ) .  The fields they produce through Maxwell’s equations are (E“,  I?’) 
+ Leubner and Zoller (1980) have recently applied the gauge invariant method to resolve some gauge 
problems in current literature. 
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and (E’, B‘). For convenience of argument we assume that, during the time interval of 
concern, p s  and Js vanish outside a finite volume T that has a closed surface U, and Q’ and 
J’ vanish inside T. This volume T is assumed to be stationary in our particular reference 
frame. 

If we define Efield and Sfield by (e.g. Jackson 1975 pp 236-41) 

then Poynting’s theorem in the integral form reads 

d3xJS * (Es + E ‘ )  = - (6.3) 

where dcr is the unit surface of U pointing outward. 
The conventional interpretation of (6.3) is conservation of energy. This inter- 

pretation, however, requires that the energy Ematter of the matter inside T be determined 
by (e.g. Jackson 1975 equation (6.110)) 

dE,,,,,,/dt = J d3xJs (Es  + E’).  
T 

(6.4) 

Any other definition of Ematter, if it is inconsistent with (6.4), violates this conservation 
law of energy. (Similar arguments can be used for the conservation laws of the linear 
and the angular momenta.) 

Let us now apply the field situation described in B 2 to equations (6.1)-(6.4) to 
construct two conservation laws of energy. The fields considered consist of a static field 
Eo(r) and a time varying electromagnetic radiation field E(r, t )  and B(r, t ) .  Let us use 
ELld and Sfield for the field energy and Poynting’s vector when E’ = E o + E  and B’ = B, 
and use and SfeId when E’ = E and B‘ = B. The energy of the matter correspond- 
ing to E’ = Eo + E will be denoted by K and that corresponding to E‘ = E will be 
denoted by ET. Thus, 

T 

dK/dt= d3xJs*(Es+EE,+E),  I, 
dET/dt = J d3xJs * (Es  + E ) .  

T 

(6 .5)  

Physically, K conserves with the total field energy and the total field energy flux; it is 
traditionally labelled the kinetic or mechanical energy of the matter. The energy ET 
conserves with the field energy and the energy flux due to (E’ +E) and (B” + B). Since 
E and B are the time varying fields, it is E T  that is responsible for the conservation with 
the radiation field energy and the radiation energy flux (Yang 1976a). According to 
traditional Newtonian mechanics, we shall label ET the total energy of the matter inside 
7. This completes our review of the classical conservation law of energy. 

6.2. The gauge invariant formulation 

The first step in the gauge invariant formulation of quantum mechanics is to solve, for a 
given Hamiltonian, for operators that satisfy equations having a term-by-term 
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correspondence (Bohr 1928) with those equations determined from the classical 
con-servation laws (of linear momentum, angular momentum and energy). For example, 
equations (6.5) and (6.6). Then, these operators are interpreted according to the 
physical meanings associated with these classical conservation laws. Finally, we use the 
eigenfunctions of HB corresponding to ET in (6.6) to define the expansion coefficients 
and interpret them as probability amplitudes (Yang 1976a). Let us show how this 
procedure works. From now on, we neglect the self-interaction. 

Let us consider the Dirac Hamiltonian in ( 5 . 2 )  in the gauge of (A, @). If we use K D  
and HE to represent K and Er in (6.5) and (6.6), then, because dKD/dt = 
aKD/at + [KD, HD]/ih and so on, these operators are determined by 

(6.7) 

(6.8) 

where JD is the current operator associated with HD in (5.2) and hence is eca. The 
solutions are (Yang 1976a, p 71) 

KD = c a  ( p  - eA/c) + pmc’, (6.9) 
HE =KD+eVo.  (6.10) 

Thus, HE still retains the physical form of the kinetic energy plus the potential energy. 
If we use {Ey( t )}  and {YF(r, t ) }  for the eigenvalues and the orthonormal and 

complete (assumed) set of eigenfunctions of H z  ( t ) ,  then the gauge invariant procedure 
defines the expansion coefficients of the wavefunction qD(r,  t )  by 

(6.11) 

As we have illustrated in (3.2), (4.1) and (4.4), a complete interpretive procedure 
requires specification of the expansion coefficients in a different gauge. Thus, we now 
consider the Dirac Hamiltonian H’D in the gauge of (A‘, 0’). 

(6.12) 

aKD/at+[KD, HD]/ih = JD. (Eo+  E) ,  

aHg/at + [ H g ,  HD]/ih = JD *E 

u p  ( t )  = WP(d I YD(f))* 

H’D = c a  - ( p  - eA’/c) +pmc2 + eVo+ e@’,  

which has the current operator JfD = eca .  The total energy operator HLD now is 

HbD = c a  - (p-eA’ /c)+pmc2+eVo (6.13) 

since it can be trivially shown that 

aHLD/at + (l/ih)[HLD, HfD] = e c a  *E. (6.14) 

If {E;D ( t ) }  and {Y;D(r, t ) }  are the eigenvalues and the orthonormal set of eigenfunctions 
of H ; f  ( t ) ,  then our expansion coefficients of wavefunction Y D ( r ,  t )  are 

a ; ” ( t )  = (Y;D(t)pwD(t)). (6.15) 

Let us now show that the expansion coefficients and the eigen energies are gauge 
invariant. For this we first note that HLD = RHER+ where R is given in (2.7). Thus, 
EiD(t) = EF(t) and Y;”(r ,  t )  = R Y y ( r ,  t ) .  Since V D ( r ,  t )  and Y D ( r ,  t )  are still related 
by (2.6), it is obvious from (6.11) and (6.15) that u:D( t )  = u F ( t )  for all j and t. 

To see that the gauge invariant procedure is also consistent with the FW trans- 
formations, let us consider the non-relativistic Hamiltonian of a spinning particle in the 
gauge (A, a): 

H = ( ~ - e A / c ) ~ / 2 m  -g(eh/2mc)s*B+eVo+e@, (6.16) 
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where s is the spin. (For comparison, we restrict the spin to magnitude i.) The total 
energy operator HB for this Hamiltonian has been obtained before (Yang 1977); it is? 

(6.17) 

If we use {Ej ( t ) }  and {Vj(r,  t)} for the eigenvalues and the orthonormal and complete 
(assumed) set of eigenfunctions of HB, the expansion coefficients {a j ( t ) }  in the gauge 
invariant procedure are 

(6.18) 

That these amplitudes are consistent with those defined in (6.1 1) can be seen as follows. 
If we perform an FW transformation on H: in (6.10) by U in ( 5 4 ,  then 

H ;  = U H ~ U t = p m c 2 + P ( 1 / 2 m ) [ c u . ( p - e A / c ) 1 2 + e V o + .  . . 

HB = ( p  - e A / ~ ) ~ / 2 m  - g(eh /2mc)s  * B +eVo .  

aj(t)  = W j ( t >  I Q(t ) ) *  

= P m ~ ~ + P ( p - e A / c ) ~ / 2 m  - @ ( e f i / 2 m c ) Z * B + + V o + .  . . , (6.19) 

where Z is the Dirac 4 x 4 spin matrix (usually expressed as ( z  :) in terms of the 2 X 2 
Pauli spin matrix). If we choose g = 2 as is the case for the electron without the 
anomalous moment interaction correction, we see that HB in (6.17) is consistent with 
H i .  Hence the {a j ( t ) }  are consistent with the {u?(t)}. 

So far we have not included the spin-orbit interaction and the correction to the 
kinetic energy due to a term proportional to the fourth power of the particle’s 
momentum. How to obtain the gauge invariant formulation for a non-relativistic 
particle with these relativistic correction terms has been a subject of recent research 
work. Some initial results can be found in the works by Kobe and Yang (1980), Yang 
and Hirschfelder (1980) and Yang et a1 (198 1). 

7. Discussions 

At first, it may look like a paradox that the Schrodinger equation, hence quantum 
mechanics, is gauge invariant whereas the conventional probability amplitudes and 
probabilities (defined by either (3.2) or (4.1)) are gauge dependent. However, the true 
meaning of the gauge invariance of the Schrodinger equation is the gauge invariance of 
the absolute value squared of the wavefunctions at each position at each time, not the 
gauge invariance of the wavefunctions themselves. Since the conventional inter- 
pretation uses the eigenfunctions of the ‘unperturbed’ Hamiltonian (at least once) and 
the wavefunctions to define the probability amplitudes, there is no direct relation 
between the gauge properties of these amplitudes and the gauge invariance of the 
Schrodinger equation. In fact, the meanings of the conventional amplitudes and 
probabilities are completely determined by the means of the ‘unperturbed’ Hamil- 
tonian since the wavefunctions are determined by the Schrodinger equation. 

It is only very recently that we begin to realise that the meanings of the ‘unpertur- 
bed’ Hamiltonian vary with the potentials in the Hamiltonian (Cohen-Tannoudji et a1 
1973, 1977, Yang 1976a, Kobe and Smirl 1978, Grynberg and Giacobino 1979, 
t This example bears out another basic difficulty in the interpretation of quantum mechanics: that the 
requirement of gauge invariance alone is not sufficient to determine uniquely the correct basis functions to be 
used to define the probability amplitudes (Yang 1976a $5 I1 C and D). For example, the choice of 
HB = ( p  - eA/c )* /2m + eVo for the Hamiltonian in (6.16) also gives gauge invariant expansion coefficients. 
However, this choice does not result in physically measurable probabilities since: (i) it violates the 
conservation of energy, and (ii) it is not consistent with the FW transformations (to be shown in a moment). 
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Leubner and Zoller 1980). Out of this understanding, a systematic discussion of 
operators in general, especially the classification of those operators whose meanings do 
not change with the gauges in the Hamiltonian, has just started to emerge (Yang 1976a, 
Cohen-Tannoudji et af  1977, Kobe and Smirl1978). As has been discussed in detail by 
Cohen-Tannoudji et af  (1977), gauge invariant probability amplitudes can result only if 
they are defined by the eigenfunctions of an operator whose meaning is gauge invariant. 

That the conventional intrerpretation generates gauge dependent probabilities can 
be easily understood in this way by looking into the meaning of the ‘unperturbed’ 
Hamiltonian. For simplicity let us use a non-relativistic spinless particle as an example 
to illustrate the essence of the arguments. Let us work with the Hamiltonian in (2.3). 

First, we note that the position operator r has a gauge invariant meaning. Thus, the 
velocity operator v defined to be the total time-derivativei- of r, 

U = (dr/dt)H = [r, H]/iA = ( p  -eA/c)/m, 17.1) 

has a gauge invariant meaning (e.g. Cohen-Tannoudji et al 1977). Furthermore, the 
meaning of eVo(r) is also gauge invariant since 

(7.2) 

and both U and Eo have gauge invariant meanings. When expressed in terms of the 
velocity operator U, the ‘unperturbed’ Hamiltonian in (3.1) becomes 

[d(eVo)/dt], = -&eu * Eo+Eo* ev) 

H o = { ~ m u 2 + e V o } + ( e / 2 c ) ( u . A + A  * ~ ) + ( e A ) ~ / 2 m c ~ .  (7.3) 

The first term, :mu2 + eVo, is gauge invariant and corresponds to the Newtonian 
total energy. The other two terms in (7.3) depend on the potentials in the Hamiltonian. 
Hence, the meaning of the ‘unperturbed’ Hamiltonian varies with the potentials in the 
Hamiltonian. From this, it is no surprise that the probability amplitudes and prob- 
abilities defined by the conventional interpretation are gauge dependent$. 

If the time-varying fields are approximated by the dipofe approximation, i.e., 
E(r ,  t )  E(0, t) and B(r, t) 2: 0, and if we choose the gauge to be such that A(r, t )  = 0 
and @(r, t )  = -er .E(O, t), then according to (7.3), the ‘unperturbed’ Hamiltonian 
corresponds to the Newtonian total energy. Thus, the conventional probabilities in this 
gauge are the physically measurable probabilities during the interaction. This simple 
understanding has been applied (Yang 1976a) to explain Lamb’s observation (1952) 
that only the interaction -er . E  gives results in agreement with his experimental data. It 
has recently been applied by Leubner and Zoller (1980) to resolve some gauge-related 
difficulties in the current literature. 

The gauge invariant formulation is designed to correct this situation by using the 
eigenfunctions of the total energy operator to define the probability amplitudes. Here, 
the total energy operator is determined by Poynting’s theorem describing the conser- 
vation of the particle’s energy with the field energy and field energy flux due to 
the time-varying field. The probabilities thus defined have two physically important 
characteristics. First, they are gauge invariant since Poynting’s theorem and the 
conservation law of energy, and hence the total energy operator, are gauge invariant. 
Second and more important, they are consistent with this conservation law of energy 
and hence they are physically measurable. 

t The following symbol (d/dr), is defined in the first line of equation (3.11). 
i O n e  can also prove that the conventional interpretation is gauge dependent [Yang 1976~)  by using the 
propagation properties of potentials in different gauges (Yang 1976b). 
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So far we have discussed only the theoretical aspects of the conventional and the 
gauge invariant formulations. As far as the exact probability amplitudes are concerned, 
they are very different. This brings up another important question: How would the 
practical results from these two formulations compare with each other? (Here one 
should bear in mind that all practical results depend on the approximations used in 
solving the differential equations for the probability amplitudes. Thus, the statement 
that is true for one approximation may not be appropriate for another.) A recent 
investigation (Yang 1981b) indicates that, within the framework of the time-dependent 
perturbation theory without the effects of the line widths, the net transition rates predicted 
by these two formulations are identical?. 
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